Управление образования и молодежной политики администрации Касимовского муниципального района, Рязанской области

Муниципальное общеобразовательное учреждение «Сынтульская средняя общеобразовательная школа»

СОГЛАСОВАНО	УТВЕРЖДАЮ
На Педагогическом Совете школы	Директор школы:
Протокол №1 от 31 августа 2024 года	О.В.Будорагина
	31 августа 2024 года

РАБОЧАЯ ПРОГРАММА КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

«Основы электроники и робототехники» (Направленность: **техническая**)

Возраст детей, на которых программа рассчитана: 7,8 классы

Срок реализации программы: 1 год

Учитель информатики Симбирцев Владимир Евгеньевич

р.п.Сынтул, 2024 год

СОДЕРЖАНИЕ

Пояснительная записка	3
Актуальность программы:	4
Цель программы:	5
Задачи программы:	5
Структура и содержание программы	6
Сроки и этапы реализации программы	7
Формы и режим занятий по программе	7
Тематическое планирование по курсу:«Основы электроники и	
робототехники»	8
Список информационных ресурсов	10

Пояснительная записка

Рабочая программа курса внеурочной деятельности «Основы электроники и робототехники» (далее программа) имеет техническую направленность и разработана для обучающихся 7-8 классов.

Программа разработана в соответствии со следующими нормативноправовыми актами:

- Федеральный закон от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации»;
- Федеральный закон Российской Федерации от 14.07. 2022 № 295-Ф3 «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации»;
- Порядок организации и осуществления образовательной деятельности при сетевой форме реализации образовательных программ (приказ Министерства науки и высшего образования РФ и Министерства просвещения РФ от 5 августа 2020 г. № 882/391);
- Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи СП 2.4. 3648-20 (постановление Главного государственного санитарного врача РФ от 28.09.2020 г. № 28);
- Устав Муниципального общеобразовательного учреждения «Сынтульская средняя общеобразовательная школа»;

и с учетом возрастных и индивидуальных особенностей обучающихся на занятиях технической направленности и спецификой работы учреждения.

Актуальность программы:

В последнее время большое развитие получает такое техническое направление как робототехника. Робототехнические устройства все активнее внедряются в нашу жизнь. Автомобиль, которым управляет робот, а не человек уже не сказка. Умный дом, умная колонка, да много чего еще.

Все это позволяет сказать, что изучение робототехники в школе весьма актуально. Занятия по робототехнике готовят детей как к управлению такими устройствами, так и конструированию последних.

Однако, конструирование робототехнических устройств невозможно без изучения механики, электроники, программирования и алгоритмизации.

Важно не только уметь собирать роботов из готовых конструкторов, но и понимать принцип их действия. Эти знания помогут юным конструкторам придумать новые подходы к созданию новых видов робототехнических устройств или оптимизации уже известных механизмов.

На основании результатов анализа образовательной деятельности школы был сделан вывод о создании курса внеурочной деятельности «Основы электроники и робототехники», в котором дети смогли бы получить знания по проектированию и созданию различных электронных и робототехнических устройств.

Занятия в объединении смогут подготовить детей к олимпиадам по робототехнике муниципального, регионального и федерального уровней.

Данное объединение работает на базе центра образования естественнонаучной и технологической направленностей «Точка роста», созданного в рамках федерального проекта «Современная школа» национального проекта «Образование».

Материально-техническая база данного центра постоянно пополняется.

Цель программы:

• развитие интереса к естественнонаучным дисциплинам, научнотехническому творчеству в области электроники и робототехники на основе приобретения профильных знаний, умений и навыков.

Задачи программы:

Обучающие:

- формирование базовых знаний в области конструирования электроники и робототехники;
- формирование базовых знаний в области программирования робототехнических устройств;
- обучение работе работе с информационными ресурсами (Интернет, техническая и справочная литература), правилам и формам оформления полученных результатов;
- получение навыков выполнения практических работ при создании электронных и робототехнических устройств;

Развивающие:

- развитие внимание и аккуратность, эстетического и художественного вкуса, творческого воображения, коммуникативных способностей;
- развитие технической культуры;
- формирование умения проектировки и изготовления электронных и робототехнических устройств;

• формирование и развитие навыков проведения исследовательских и проектных работ.

Воспитательные:

- воспитание культурной и технически грамотной личности;
- воспитание патриотизма, трудолюбия, умения работать в команде.

Программа предполагает:

- Индивидуальный подход (ориентация на личностный потенциал ребенка и его самореализацию);
- Возможность индивидуального образовательного маршрута;
- Тесную связь с практикой, ориентация на создание конкретного персонального продукта;
- Разновозрастный характер объединений;
- Возможность проектной и учебно-исследовательской деятельности.

Программа строится на следующих дидактических принципах:

- доступности соответствие возрастным и индивидуальным особенностям
- наглядности иллюстративность, наличие дидактического материала;
- научности обоснованность, наличие методологической базы и теоретической основы;
- принципа «от простого к сложному» научившись элементарным навыкам работы, ребёнок переходит к выполнению более сложных творческих работ

Структура и содержание программы

Содержание программы строится по модульному принципу, состоящую из набора самостоятельных модулей:

- Основы электроники
- Цифровая электроника
- Программирование микроконтроллеров

Модуль «**Основы электроники**» предполагает изучение основных физических законов в области электроники. Обучающиеся узнают об основных радиоэлементах, учатся пользоваться измерительными приборами, такими как мультиметр, осциллограф и т.д. пробуют свои силы в создании простых электронных устройств.

Модуль «**Цифровая электроника**» знакомит обучающихся с простыми и составными логическими элементами, принципами их работы и созданию на их основе различных цифровых электронных устройств.

Модуль «**Программирование микроконтроллеров**». В данном модуле обучающиеся узнают о микроконтроллерах «Ардуино». Учаться программированию данных микроконтроллеров, узнают о способах подключения датчиков к микроконтроллеру и виды таких датчиков. Учатся создавать на основе конструкторов различных робототехнических устройств.

Характеристика обучающихся по программе

По программе могут обучаться дети в возрасте от 12 до 14 лет, интересующиеся робототехникой. Набор и формирование групп осуществляется без вступительных испытаний. Наполняемость групп от 10 до 15 обучающихся.

Сроки и этапы реализации программы

Программа рассчитана на один год обучения, 68 часов, один раз в неделю по 2 часа и разделена на три модуля. Основана на изложении материала в доступной и увлекательной форме с достаточным количеством практических работ и проектов.

Формы и режим занятий по программе

В соответствии с нормами СанПин 2.4. 3648-20 занятия проводятся 1 раз в неделю Продолжительность занятий — 2 академических часа. Формы организации образовательного процесса предполагают проведение коллективных занятий (всей группой 10-15 человек), малыми группами (4-6 человек) и индивидуально. Формы проведения занятий: комбинированное занятие, практическое занятие, проектная и исследовательская деятельность.

Структура занятия:

I этап. Организационная часть.

• Ознакомление с правилами поведения на занятии, организацией рабочего места, техникой безопасности при работе с инструментами и оборудованием.

II этап. Основная часть.

- Постановка цели и задач занятия.
- Создание мотивации предстоящей деятельности.
- Получение и закрепление новых знаний.
- Физкультминутка.
- Практическая работа группой, малой группой, индивидуально.

III этап. Заключительная часть.

• Анализ работы. Подведение итогов занятия. Рефлексия.

Тематическое планирование по курсу: «Основы электроники и робототехники»

NºNº	Наименование разделов и тем	Часы	Примечание
1.	Введение. Техника безопасности при работе кружка	1	Теория
2.	ОСНОВЫ ЭЛЕКТРОНИКИ	33	
2.1.	Инструменты элекронщика. Экскурсия на приборный завод	3	Теория
2.2.	Что такое электричество?	1	Теория
2.3.	Батарейка из лимона	1	Практика
2.4.	Электричество и магнетизм	1	Теория
2.5.	Электромотор из подручных средств	1	Практика
2.6.	Резистор. Виды резисторов и принцип их работы	1	Теория
2.7.	Определение сопротивления резистора	1	Практика
2.8.	Последовательное соединение резисторов	1	Теория
2.9.	Определение последовательного сопротивления резисторов	1	Практика
2.10.	Параллельное соединение резисторов	1	Теория
2.11.	Определение параллельного сопротивления резисторов	1	Практика
2.12.	Диод и светодиод. Устройство и принцип работы	1	Теория
2.13.	Определение сопротивления токоограничивающего резистора для светодиода	1	Практика
2.14.	Определение характеристик светодиода	2	Практика
2.15.	Конденсатор - почти батарейка	1	Теория
2.16.	Изучение свойств конденсатора	1	Практика
2.17.	Транзистор - усилительный прибор	1	Теория
2.18.	Изучение работа транзистора "Выключатель дружбы"	1	Практика
2.19.	Компьютерные колонки. Усилитель на транзисторах	2	Практика
2.20.	Генератор звуковой частоты "Пищалка" на транзисторе	2	Практика
2.21.	Маячок на транзисторах	1	Практика
2.22.	Полицейская мигалка. Делаем мультивибратор	1	Практика
2.23.	Понятие ВЕАМ-роботов. Виды и принципы работы	1	Теория
2.25.	Робот, едущий по линии	2	Практика
2.26.	Соревнования роботов на скоростное прохождение маршрута	2	Практика
	ИТОГО (ПЕРВОЕ ПОЛУГОДИЕ):	34	•
3.	ЦИФРОВАЯ ЭЛЕКТРОНИКА	14	
3.1.	Алгебра логики в цифровых устройствах. Основные логические элементы	1	Теория
3.2.	Логический элемент " И ". Составление схемы. Таблица истинности	1	Практика
3.3.	Логический элемент " ИЛИ ". Составление схемы. Таблица истинности	1	Практика

NºNº	Наименование разделов и тем	Часы	Примечание
3.4.	Логический элемент " HE ". Составление схемы. Таблица истинности	1	Практика
3.5.	Цифровые микросхемы. Составные логические элементы	1	Теория
3.6.	Микросхема К155ЛАЗ (SN7400N) "2И-НЕ" . Изучение работа. Составление таблица истинности	1	Практика
3.7.	Логический элемент " 2И-HE ". Составление схемы. Таблица истинности (на микросхеме K155ЛA3 (SN7400N))	1	Практика
3.8.	Логический элемент " 2ИЛИ-НЕ ". Составление схемы. Таблица истинности (на микросхеме К155ЛЕ4)	1	Практика
3.9.	Логический элемент " HE ". Составление схемы. Таблица истинности (на микросхеме K155ЛA3 (SN7400N))	1	Практика
3.10.	Маячок на логических элементах	1	Практика
3.11.	Полицейская мигалка на логических элементах	1	Практика
3.12.	Генератор прямоугольных импульсов на логических элементах	1	Практика
3.13.	Триггер - ячейка памяти. Виды триггеров	1	Теория
3.14.	Триггер из микросхемы К155ЛАЗ. "Включаем светодиод кнопкой"	1	Практика
4.	ПРОГРАММИРУЕМ МИКРОКОНТРОЛЛЕРЫ	20	
4.1.	Что такое ардуино? Виды и принцип работы	1	Теория
4.2.	Программное обеспечение для программирования микроконтроллеров. Структура программы	1	Практика
4.3.	Мигаем встроенным светодиодом	1	Практика
4.4.	Мигаем светодиодом, но не встроенным	1	Практика
4.5.	Новогодняя гирлянда	1	Практика
4.6.	Включаем светодиод кнопкой	1	Практика
4.7.	Регулируем яркость светодиода переменным резистором	1	Практика
4.8.	Регулируем яркость светодиода кнопками	1	Практика
4.9.	Активный динамик. Пищалка на микроконтроллере	1	Практика
4.10.	Пассивный динамик. Делаем музыкальную шкатулку	1	Практика
4.11.	Управление моторами с помощью микроконтроллера	1	Теория
4.12.	Проект луноход. Разрабатываем прототип	1	Практика
4.13.	Проект луноход. Собираем модель	2	Практика
4.14.	Проект луноход. Пишем ПО	2	Практика
4.15.	Проект луноход. Прошиваем микроконтроллер. Отладка	2	Практика
4.16.	Соревнование: "Прохождение полосы препятствий"	2	Практика
	ИТОГО (ВТОРОЕ ПОЛУГОДИЕ):	34	
	ВСЕГО:	68	

Список информационных ресурсов

- 1. Голиков Д.В. Scratch. 18 игровых проектов для юных программистов микроконтроллеров. СПб.: БХВ-Петербург, 2018 160 с.: ил.
- 2. Блум Джемери Изучаем Arduino: инструменты и меторды технического волшебства:Пер. с анг. СПб.: БХВ-Петербуг, 2018, 336 с.: ил.
- 3. Момот М.В. Мобильные роботы на базе Arduino/ -2-е изд., переработ. и доп.- СПб,:БХВ-Петербург. 336 с.: ил.
- 4. "Руководство пользователя к набору "Умный дом" для экспериментов с конроллером Arduino" -СПб.: БХВ-Петербург, 2017 48 с.: ил.
- 5. Информатика. Примерные рабочие программы курсов внеурочной деятельности. 5-6, 7-9 классы: учебно методическое пособие /Под ред. Л. Л. Босовой. М.: БИНОМ. Лаборатория знаний, 2020 136 с.